Guía docente de Estadística (2461117)

Curso 2024/2025
Fecha de aprobación: 25/06/2024

Grado

Grado en Ingeniería Civil (Plan 2023)

Rama

Ingeniería y Arquitectura

Módulo

Materias Básicas

Materia

Matemáticas

Curso

1

Semestre

2

Créditos

6

Tipo

Troncal

Profesorado

Teórico

  • Fernando Jesús Navas Gómez. Grupo: C
  • María Jesús Rosales Moreno. Grupos: A y B

Práctico

  • Fernando Martínez Álvarez Grupo: 4
  • María del Carmen Martínez Álvarez Grupo: 3
  • Fernando Jesús Navas Gómez Grupos: 4, 5 y 6
  • María Jesús Rosales Moreno Grupos: 1 y 2

Tutorías

Fernando Jesús Navas Gómez

Email
No hay tutorías asignadas para el curso académico.

María Jesús Rosales Moreno

Email
No hay tutorías asignadas para el curso académico.

Fernando Martínez Álvarez

Email
No hay tutorías asignadas para el curso académico.

María del Carmen Martínez Álvarez

Email
No hay tutorías asignadas para el curso académico.

Prerrequisitos y/o Recomendaciones

Se recomienda tener cursada la asignatura Cálculo.

Breve descripción de contenidos (Según memoria de verificación del Máster)

Estadística descriptiva. Distribuciones de probabilidad. Inferencia estadística. Optimización en la Investigación Operativa.

Resultados del proceso de formación y de aprendizaje

Conocimientos o Contenidos

  • C01. Conoce y comprende las matemáticas y otras ciencias básicas inherentes a la ingeniería civil

Competencias

  • COM01. Poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • COM02. Aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
  • COM03. Tener la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  • COM05. Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  • COM06. Poseer la capacidad de análisis y síntesis.
  • COM07. Poseer la capacidad de organización y planificación.
  • COM08. Comunicar de forma oral y/o escrita.
  • COM09. Ser capaz de estar al día en las novedades de ciencia y tecnología.
  • COM10. Poseer la capacidad de gestión de la información.
  • COM11. Tener capacidad para la resolución de problemas.
  • COM12. Ser capaz de trabajar en equipo.
  • COM13. Aplicar el razonamiento crítico
  • COM14. Aprender de forma autónoma
  • COM15. Integrar creatividad
  • COM16. Integrar iniciativa y espíritu emprendedor
  • COM17. Participar en la internacionalización e interculturalidad.
  • COM18. Contribuir al logro de las metas de los ODS incluidas en la categoría Personas (ODS 1, ODS 2, ODS 3, ODS 4 y ODS 5 ).
  • COM20. Contribuir al logro de las metas de los ODS incluidas en la categoría Prosperidad (ODS 7, ODS 8, ODS 9, ODS 10, ODS 11).
  • COM22. Capacitación científico-técnica para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas y conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento, conservación y explotación.
  • COM23. Comprensión de los múltiples condicionamientos de carácter técnico y legal que se plantean en la construcción de una obra pública, y capacidad para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la mayor eficacia en la construcción dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los trabajadores y usuarios de la obra pública.
  • COM32. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.

Habilidades o Destrezas

  • HD02. Analiza productos, procesos y sistemas complejos en su campo de estudio; elije y aplica de forma pertinente métodos analíticos, de cálculo y experimentales ya establecidos e interpreta correctamente los resultados de dichos análisis.
  • HD03. Identifica, formula y resuelve problemas de ingeniería en su especialidad; elije y aplica de forma adecuada métodos analíticos, de cálculo y experimentales ya establecidos; reconoce la importancia de las restricciones sociales, de salud y seguridad, ambientales, económicas e industriales.
  • HD06. Realiza búsquedas bibliográficas, consultar y utilizar con criterio bases de datos y otras fuentes de información, para llevar a cabo simulación y análisis con el objetivo de realizar investigaciones sobre temas técnicos de su especialidad.
  • HD08. Posee la capacidad y destreza para proyectar y lleva a cabo investigaciones experimentales, interpretar resultados y llegar a conclusiones en el campo de la ingeniería civil.
  • HD11. Recoge e interpreta datos y manejar conceptos complejos dentro de su especialidad, para emitir juicios que impliquen reflexión sobre temas éticos y sociales.
  • HD15. Reconoce la necesidad de la formación continua propia y de emprender esta actividad a lo largo de su vida profesional
  • HD16. Está al día en las novedades en ciencia y tecnología.

Resultados de aprendizaje (Objetivos)

  • Conocer y manejar con soltura conceptos y técnicas básicas de la Estadística descriptiva unidimensional.
  • Conocer y utilizar con destreza conceptos y métodos básicos de la Estadística descriptiva bidimensional como distribuciones marginales y condicionadas, regresión y correlación lineal, otros ajustes no lineales...
  • Establecer y manejar hábilmente conceptos y resultados básicos relativos a la Teoría de probabilidad: concepción axiomática, probabilidad condicionada, teorema de Bayes, independencia de sucesos.
  • Establecer, justificar y manejar en la práctica conceptos básicos de Cálculo de probabilidades: variable aleatoria, función de distribución y características de una distribución de probabilidad.
  • Reconocer y manejar con soltura los principales modelos de distribuciones unidimensionales discretas y continuas, en especial Binomial, Poisson, Normal y las distribuciones básicas para la Inferencia estadística.
  • Conocer y emplear adecuadamente conceptos básicos de muestreo aleatorio, estadístico muestral y su distribución en el muestreo. Estudio en poblaciones normales.
  • Comprender y usar con destreza los resultados básicos sobre Estimación puntual y por intervalos de confianza; aplicarlos correctamente a problemas relativos a una y dos poblaciones normales independientes.
  • Conocer y manejar con soltura las nociones básicas de Contrastes de hipótesis. Saber plantear y resolver correctamente problemas de contrastes paramétricos para una y dos poblaciones normales independientes. Aplicar a datos reales.
  • Conocer y saber utilizar software estadístico para la resolución de problemas reales y en relación con determinados objetivos formativos antes mencionados.
  • Explicar los conceptos generales de la Optimización especialmente dirigida a la resolución de problemas propios del ámbito de la Investigación operativa. Conocer métodos de la Programación lineal.

Programa de contenidos Teóricos y Prácticos

Teórico

  1. BLOQUE I: Temas 1 y 2
  2. BLOQUE II: Temas 3, 4 y 5
  3. BLOQUE III: Temas 6, 7 y 8

Tema 1. ESTADÍSTICA UNIDIMENSIONAL

  • Introducción. Conceptos básicos
  • Distribución de frecuencias unidimensional
  • Características de posición
  • Características de dispersión
  • Características de forma

Tema 2. ESTADÍSTICA BIDIMENSIONAL

  • Distribución de frecuencias bidimensional
  • Distribuciones marginales y condicionadas. Características
  • Covarianza
  • Independencia y dependencia estadística
  • Regresión lineal simple mínimo cuadrática. Ajuste de las rectas de regresión
  • Ajuste de modelos no lineales
  • Análisis de la correlación

Tema 3. PROBABILIDAD

  • Introducción. Fenómenos aleatorios
  • Nociones y resultados básicos
  • Concepción axiomática de probabilidad. Asignación de probabilidades
  • Probabilidad condicionada
  • Teoremas básicos
  • Independencia de sucesos

Tema 4. VARIABLE ALEATORIA

  • Noción de variable aleatoria. Función de distribución
  • Variables aleatorias discretas y continuas
  • Esperanza Matemática. Otras características
  • Vectores aleatorios. Independencia estocástica

Tema 5. MODELOS DE DISTRIBUCIONES DE PROBABILIDAD

  • Modelos de probabilidad discretos: distribución de Bernoulli, Binomial, Poisson
  • Modelos de probabilidad continuos: distribución Normal. Otras distribuciones
  • Distribuciones univariantes relacionadas con la Normal

Tema 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. ESTIMACIÓN

  • Introducción a la Inferencia estadística. Nociones básicas
  • Estadísticos muestrales y distribuciones en el muestreo. Muestreo en poblaciones Normales
  • Estimación Puntual. Conceptos y resultados básicos
  • Estimación por intervalos de confianza. Conceptos y resultados básicos
  • Intervalos de confianza en poblaciones Normales

Tema 7. CONTRASTE DE HIPÓTESIS

  • Conceptos básicos
  • Resolución de contrastes de hipótesis paramétricos
  • Contrastes de hipótesis clásicos para los parámetros de una y dos poblaciones Normales independientes

Tema 8. INTRODUCCIÓN A LA PROGRAMACIÓN LINEAL

  • Introducción. Optimización en la Investigación operativa
  • Planteamiento de un problema de Programación lineal
  • Resolución de un problema de Programación lineal. El método gráfico
  • El método Simplex

Práctico

  • Problemas en pizarra

Se realizarán sesiones de problemas en pizarra sobre los contenidos formativos del temario.

  • Prácticas en ordenador

Se realizarán prácticas en ordenador sobre sobre los contenidos formativos del temario utilizando software estadístico.

Bibliografía

Bibliografía fundamental

  • Cánavos, G.C. (2003). Probabilidad y Estadística. McGraw-Hill.
  • Mendenhall, W. y Sincich, T. (2007). Probabilidad y Estadística para Ingeniería y Ciencias. Prentice Hall.
  • Milton, J.S. y Arnold, J.C. (2004). Probabilidad y Estadística (con aplicaciones para Ingeniería y Ciencias computacionales). McGraw-Hill Interamericana.
  • Montgomery, D.C. and Runger G.C. (2006) Applied Statistics and Probability engineers. Wiley and Sons.
  • Peña Sánchez-Rivera, D. (2001). Estadística. Modelos y Métodos, Vol. 1. Alianza Editorial.
  • Pérez C. (2001). Técnicas estadísticas con SPSS. Prentice-Hall.
  • Rosales Moreno, M.J. (2016). Estadística básica. Introducción a la Programación lineal. Editorial Técnica Avicam.
  • Ross, S.M. (2007). Introducción a la Estadística. McGraw-Hill.
  • Spiegel, M.R., Schiller, J. Srinivasan, R.V. (2002). Probability and Statistics. McGraw-Hill, New York.
  • Walpole, R., Myers, R., Myers S.L. (2012). Probabilidad y Estadística para Ingenieros. Prentice Hall.

Bibliografía complementaria

  • Arreola Risa, J.S. y Arreola Risa, A. (2003). Programación lineal: una introducción a la toma de decisiones. International Thomson.
  • Balbás de la Corte, A.; Gil, J.A. (2005). Programación matemática. Editorial AC.
  • DeGroot, M.H. (2002). Probabilidad y Estadística. Adisson-Wesley.
  • Fernández-Abascal, H., Guijarro, M., Rojo, J.L. y Sanz, J.A. (1994). Cálculo de probabilidades y Estadística. Ariel Economía S.A.
  • González Manteiga, M.T. y Pérez de Vargas Luque, A, (2009). Estadística aplicada. Una visión instrumental. Ediciones Díaz de Santos.
  • Peña Sánchez-Rivera, D. (2008). Fundamentos de Estadística. Alianza Editorial.
  • Ríos-Insua, S., Mateos, A., Bielza, M. C. y Jiménez, A. Investigación Operativa. Modelos determinísticos y estocásticos. Centro de Estudios Ramón Areces, 2004.

Enlaces recomendados

Actividades formativas y metodologías docentes

  • MD01. Exposiciones en clase del docente. Podrán ser: 1) Lección magistral: presentación de conceptos teóricos y desarrollo de contenidos; 2) Clases de problemas: resolución de supuestos prácticos;3) Seminarios: ampliación y profundización en aspectos concretos;4) Aula invertida: transferencia del proceso de aprendizaje fuera de la clase. Se motivará al estudiantado a la reflexión, para el descubrimiento de las relaciones entre conceptos y tratando de formarle mentalidad crítica; se fomentará la participación y el debate; se optimizará el tiempo presencial para facilitar y potenciar otros procesos de adquisición y práctica de conocimientos y competencias.
  • MD02. Prácticas bajo supervisión del docente. Podrán ser: 1) En aula: resolución de casos analítica o numéricamente; 2) De laboratorio: supuestos reales; 3) De campo: visitas en grupo a obra, instalaciones y empresas; 4) Aprendizaje basado en proyectos o casos prácticos. El estudiantado adquirirá las destrezas y competencias necesarias para la aplicación de conocimientos; desarrollará habilidades instrumentales y competencias prácticas; contextualizará conocimientos y su implantación; aprenderá a resolver problemas.
  • MD03. Trabajos de forma no presencial. Actividades propuestas por el docente para realizar individualmente o en grupo. Los estudiantes presentarán en público, desarrollando las habilidades, destrezas y competencias transversales de la materia; mejorarán el aprendizaje cooperativo, mediante la interacción entre estudiantes, y con el docente con un enfoque interactivo de organización del trabajo.
  • MD04. Tutorías académicas. Personalizadas o en grupo donde el docente supervisará el desarrollo del trabajo no presencial, reorientará a los estudiantes en aspectos que detecte y aconsejará sobre bibliografía.
  • MD05. Exámenes. Actividad que podrá formar parte del procedimiento de evaluación.

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

La calificación global responderá a la puntuación ponderada de diferentes aspectos y actividades que integran el sistema de evaluación de la asignatura que a continuación se detalla.

  • Examen final de teoría y problemas relativo a los 3 bloques temáticos de la asignatura: 67%
  • Pruebas de evaluación continua relativas a los bloques temáticos de la asignatura (cuestiones teóricas y problemas que serán resueltos y entregados en el aula): 23%
  • Evaluación de las prácticas en ordenador (resolución de ejercicios de entrega en las sesiones prácticas, y prueba/s de prácticas): 10%

Para superar la asignatura, el alumno debe obtener en el examen final una puntuación mínima de 4.4 sobre 10, obteniendo en el tercer bloque temático una calificación mínima del 40% de la puntuación asignada a este. En caso contrario, la calificación final será la menor entre la calificación ponderada obtenida mediante el sistema de evaluación expuesto y 4.4 (suspenso).

  • El alumno que supere la prueba de evaluación continua del primer y/o segundo bloque temático con un 5 sobre 10 puntos, tendrá la opción de poder eliminar esa materia para el examen final con una calificación en el bloque/es correspondientes de “Nota obtenida en la prueba de evaluación continua sobre 1 punto × 2”.

En esta situación, para superar la asignatura:

  1. El alumno que haya eliminado materia de dos bloques temáticos, debe obtener en el examen final una puntuación mínima del 40% de la puntuación asignada al tercer bloque. En caso contrario, la calificación final será la menor entre la calificación ponderada obtenida y 4.4 (suspenso).
  2. El alumno que haya eliminado materia de un solo bloque, debe obtener en el examen final una puntuación mínima de 4.4 sobre 10, obteniendo en el tercer bloque una calificación mínima del 40% de la puntuación asignada a este. En caso contrario, la calificación final será la menor entre la calificación ponderada obtenida y 4.4 (suspenso).

El alumno que decida no presentarse al examen final, tendrá la calificación “No presentado”.

El alumno que en la Convocatoria Ordinaria no supere la asignatura, pero haya obtenido una calificación total en prácticas en ordenador mínima del 70%, habiendo aprobado la/s prueba/s de prácticas de ordenador realizada/s, tendrá la posibilidad de conservar su nota para la Convocatoria Extraordinaria.

Evaluación Extraordinaria

La evaluación en las convocatorias extraordinarias consistirá en:

  • Examen de teoría y problemas: 90%
  • Examen de prácticas en ordenador: 10%

El alumno que decida no presentarse al examen de teoría y problemas obtendrá la calificación “No presentado”.

Evaluación única final

La evaluación única final, a la que el alumno se puede acoger en los casos indicados en la “Normativa de Evaluación y de Calificación de los Estudiantes de la Universidad de Granada (art. 8)” consistirá en:

  • Examen de teoría y problemas: 90%
  • Examen de prácticas en ordenador: 10%

El alumno que decida no presentarse al examen de teoría y problemas obtendrá la calificación “No presentado”.

Información adicional

Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).